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Abstract 

Combining the Kaplan surface mode approach for chit-al fermions with added terms motivated by Eichten and Preskill 
suggests the possibility for a lattice regularization of the standard model which is finite, exactly gauge invariant, and only 
bas physically desired states in its low energy spectrum. The conjectured scheme manifestly requires anomaly cancelation 
and explicitly contains baryon and lepton number violating terms. Published by Elsevier Science B.V. 

From the beginnings of lattice gauge theory, chiral 
symmetries have been perplexing. The issues revolve 
around anomalies and fermion doubling. For vector- 
like theories, such as the strong interactions via gluon 
exchange, the problems are largely resolved. The stan- 
dard Wilson [ 1 ] approach adds a symmetry breaking 
term to give all doublers a mass which becomes infi- 
aite with the cutoff scale. The approach breaks chiral 
symmetry rather severely, with the usual current alge- 
bra predictions only expected in the continuum limit. 
While somewhat inelegant, the procedure is well de- 
fined and widely adopted. 

The situation is more clouded for the full standard 
model. Here chiral symmetry plays a fundamental role, 
with neutrinos maximally violating parity. To couple 
a gauge field, such as the W, to the requisite chiral 
currents is considerably less straightforward. Among 

* This manuscript has been authored under contracts number DE- 
AC02-76CHOOO16 and PEFGO2-91ER40676 with the US De- 
partment of Energy. 

the interesting requirements is the baryon violating 
process discussed by ‘t Hooft [2] in the context of 
topologically non-trivial gauge configurations. As em- 
phasized by Eichten and Ereskill [ 31 and further dis- 
cussed by Banks [ 41, a valid lattice formulation must 
allow for such processes and incorporate terms which 
violate all anomalous symmetries. Early attempts to 
include such in the context of a generalized Wilson 
action met with difficulties [ 51. 

A particularly beautiful feature of the original Wil- 
son lattice theory [6] is its exact local gauge invari- 
ance. While one possible approach to the standard 
model is to break chiral symmetry explicitly, as with 
the Wilson fermion approach, for the weak interactions 
this will also break the gauge symmetry, requiring a 
plethora of counter terms [ 71. Our goal is a lattice 
formulation that keeps all gauged symmetries exact. 

A few years ago Kaplan [8] suggested a lattice 
generalization of an analysis by Callan and Harvey 
[9] as the basis for a theory of chiral fermions. The 
approach uses topological defects to bind fermionic 
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zero modes [ lo]. A “domain wall” in five dimen- 

sions can naturally bind chiral states. In band theory 

these modes are known as Shockley [ 111 states, and 

arise when the particle states and the Dirac sea are 

strongly coupled [ 121. This approach, and an elegant 

variation by Narayanan and Neuberger [ 13-151, have 
rekindled interest in chiral theories on the lattice. The 

extension to an extra dimension is also quite reminis- 

cent of anomaly effects in chiral Lagrangian theory 
[ 161. Nevertheless, subtle confusion revolves around 

making the extra dimension infinite [ 17,181. Here we 

strive to control this limit, providing further support 
for the approach of Refs. [ 13-151. 

When the extra dimension is finite, the topological 

defects are naturally paired. For every domain wall 
there is a mirror defect carrying additional modes. This 

naturally gives rise to a doubling of species; indeed, 
this pairing is the minimal amount required by basic 

theorems [ 191. This scheme does provide a promis- 

ing approach to the chiral symmetries of the strong in- 

teractions [ 201, but for the electro-weak theory gives 
unwanted “mirror” particles. Here we argue that one 
can deal directly with Kaplan fermions on a finite lat- 

tice, using a variation on the Eichten-Preskill idea to 

give the mirrors masses of the order of the cutoff. 
We start with the standard five-dimensional Wilson 

fermion theory with hopping parameter sufficiently 

large that surface modes appear [ 121. Our boundary 
condition is open in the fifth dimension, implement- 

ing Shamir’s [ 2 I] variation on the Kaplan approach 

(this detail is not essential). We take ordinary space- 

time dimensions as periodic. We add enough fermionic 

fields to establish on one four-dimensional face of this 
system all the desired fermionic states of the standard 

model, i.e. a strong triplet of weak doublets of quarks 
and a lepton doublet for each generation. We make 
no attempt to explain why the real world seems to 
have three generations, and thus just repeat this struc- 

ture three times. Unlike in Ref. [ 201, we put both the 
left- and right-handed components of the quarks on 
the same face. We also include spectator right-handed 
neutrinos on this wall. While these decouple in the 
standard model, their mirrors are necessary for the re- 

moval of other extraneous states. 
At this stage we have the fundamental fermions of 

the full standard model on one interface. However, on 
the secondary wall in the fifth dimension an unwanted 
mirror state exists for each desired mode. As usual 

with the domain wall approach, we couple the four- 
dimensional gauge fields equally to each slice, and put 

no gauge field component in the extra direction. The 
mirror states then couple to the gauge fields with equal 

strength but opposite parity as the desired fermions. 

We want to give the extra states masses compara- 
ble to the cutoff scale. We wish to do this without 

breaking any of the gauge symmetries. This problem 

is mathematically equivalent to eliminating an extra 
generation from the standard model; we just have pe- 

culiar parity properties. To remove a family is inher- 
ently non-trivial because of the ‘t Hooft process in- 
volving baryon decay. The baryon number change in 
that process is proportional to the number of genera- 

tions; thus, to eliminate one requires additional baryon 
violation. 

The presence of the ‘t Hooft process hints at a way 
to do exactly what we want. Indeed, ‘t Hooft described 

the process in terms of an effective interaction vertex. 

Considering only a single generation at the hadronic 

level, a member of the proton-neutron doublet can 

convert to a member of the positron anti-neutrino dou- 
blet. In terms of these physical particles, such a mix- 
ing is an off-diagonal mass term. To give the particles 

additional mass, one can artificially enhance this cou- 

pling. Our suggestion is to add such a coupling only 
on the secondary wall, leaving the primary wall bear- 

ing all the low energy fermions of the standard model. 

In essence, we use the Kaplan approach to separate 

the desired states from their mirrors, and then apply 
an Eichten-Preskill interaction to generate a mass gap 

for the mirrors. 

The weak interactions generate the product over 
generations of such vertices only for left-handed he- 
licities. What we do here differs in two respects. First, 
rather than the product of such terms, we treat the 
generations independently and add together terms for 
each. This simplifies the discussion so we can treat 

each family separately. Second, we add a vertex of 
this form for each mirror helicity, both left and right. 
This will generate a mass gap for all mirrors. We place 

these terms only on the secondary wall of our five- 
dimensional formalism. 

The above discussion is at the level of the physi- 
cal particles after confinement is taken into account. 
At another level, the added vertex is actually a four- 
fermion coupling, mixing anti-leptons with triplets of 
quark fields. To write the coupling in a compact form, 
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@tend the strong SU( 3) index to take on a fourth value 
#presenting the leptons. We work with a three in- 
dexed fermionic field I,&,~ where the first index CT rep- 
msents this four-component combination, the second 
index represents the two components rotating under 
the SU(2) of the weak interactions, and the final in- 
dex represents the spinor components of the fermionic 
geld. For a chiral fermion, the last index can be re- 
stricted to only two components. Thus there are a total 
of 16 independent fermionic variables for each gener- 
ation. Explicitly in terms of the fields for the u and d 
quarks and the electron neutrino doublet, these fields 
are 

/u; d; u; d;\ 

e2 / 

Here the subscripts represent the two components of 
the chiral field, and the superscripts are the internal 
symmetry indices of the quark confining dynamics 

(QCD). 
The interaction we are interested in is 

We add to our Hamiltonian or Lagrangian a tunable 
coupling g times V + V+. Separate vertices are used 
for left- and right-handed fields, although the weak 
interactions only generate one of these. In particu- 
lar, in addition to the usual particles of the standard 
model we include a light right-handed neutrino on the 
original wall. As the gauge fields do not interact di- 
rectly with this particle, it decouples in the continuum 
limit. On the lattice, however, we use its doubler in the 
mass generation for the doublers of the right-handed 
quarks. There may exist some variation of Eq. (2) 
which avoids this spurious particle; this is a subject 
Lr future consideration. 

The invariance of the antisymmetric tensors ensures 
that this interaction respects exactly all the desired 
symmetries of our system. These include the SU( 3) of 
the strong interactions and the weak SU( 2) symmetry. 
The U( 1) invariance follows from the neutrality of 
the vertex. The coupling is also a Lorentz scalar since 
cthiral fermionic fields transform as a rotation by a 

complex angle, although as usual this symmetry will 
be broken by the lattice regularization. 

That such a vertex can induce a mass gap follows 
from a strong coupling (g) expansion about the static 
limit. In this limit each site decouples, giving 

sexp ($ ) (V(n) + V+(n)) = (Cgy, (3) 

f 

where the Jf is a path-integral over fermionic fields, C 
is a non-zero constant and N is the number of lattice 
sites on the second wall. The power of eight on g 
comes from sixteen fermion factors for each of the 
two helicities, and the vertex is of fourth order. The 
kinetic terms for the fermions give a perturbation on 
this result. 

In Hamiltonian language, the basic vertex is a ma- 
trix operating on a Hilbert space of 216 basis states. 
We normalize with the conventional anti-commutation 
relation 

[ICl,lilsl~++ 1 = aontqaiili*Ss,sz. 0212S2J + (4) 

Regarding the components of @ as destruction oper- 
ators and taking H = V + V+, we have a somewhat 
unusual quantum mechanics problem, where fermion 
number is only conserved modulo four. 

The ground state wave function has fermion num- 
ber vanishing modulo four. It is most easily expressed 
by applying Vt to the bare vacuum IO), annihilated 
by $a,i,s. Define the normalized state In) 0; V+“jO). 
Because at most 16 fermions can be created, this se- 
quence terminates at n = 4. The Hamiltonian closes on 
this set, giving a 5 by 5 matrix problem. The ground 
state 

has energy Eo = - 16J78 = -141.308.. . and is non- 
degenerate. This state is a singlet under both the strong 
and weak gauge symmetries. As expected, it mixes 
states of different baryon and lepton number. 

Similar manipulations give the first excited state, 
which turns out to be in the sector mixing states 
with fermion number 2 mod 4. It has energy Ei = 

-8\/122+ lo&? = -118.79.. . . This energy rep- 
resents a multiplet of non-singlet states. 



344 M. Creutz et al. / Physics Letters B 402 (1997) 341-345 

The strong coupling approach starts with each site in 
the ground state. Treated as a perturbation, the fermion 
kinetic terms allow hopping between adjacent sites. 
This will excite the two sites involved, requiring a fi- 
nite energy. That energy represents a gap in the spec- 
trum, corresponding to the existence of only massive 
states. 

The enhanced vertex should not induce a sponta- 
neous breaking of one of the gauge symmetries in the 
problem. The unique ground state for the strong cou- 
pling expansion shows that this does not happen as 
long as the four-fermion coupling is sufficiently large 
compared with the kinetic term. 

For our scheme to work, the added coupling must 
not drastically interfere with the nature of the heavy 
states in the fifth dimension. Ref. [ 221 showed such a 
difficulty with using an infinite Higgs coupling on the 
secondary wall. If we do take our added coupling to 
infinity, the last slice in the extra dimension decouples, 
giving an effective theory with one less slice. This 
returns us to the starting model with unwanted mirrors. 
To avoid this we must keep the coupling finite but large 
enough to apply the above strong coupling analysis 
on the low energy states. Ref. [22] suggests that a 
phase with massless mirrors might persist for a finite 
range of coupling below infinity. If that happens here 
as well, we must appeal to a hierarchical continuum 
limit, adjusting the scale of the extra term to be small 
compared to the scale of the heavy states, but large 
compared with the weak scale. Here is the weakest 
point in our argument; a superstrong coupling phase of 
massless mirrors and a spontaneously broken region 
at intermediate coupling could possibly squeeze out 
our desired phase of strongly coupled massive mirrors. 
Such a situation would cast serious doubts on any 
construction of chiral gauge theories. 

A four-fermion vertex can generally be broken into 
fermion bilinears interacting with an auxiliary scalar 
field. Such Yukawa like models have been extensively 
discussed in the past, particularly in the quest for a chi- 
ral fermion theory [ 231. These studies show a rather 
rich phase structure. We want to place the extra wall in 
a strong coupling phase with a mass gap but not dis- 
playing any spontaneous symmetry breaking. Such is 
sometimes referred to as a paramagnetic strong cou- 
pling phase. For our purposes we are not interested in 
a continuum limit of this Yukawa model; indeed, we 
want no light particles remaining on the extra wall as 

the lattice spacing goes to zero. Meanwhile, we always 
keep the original wall in the weakly coupled phase 
with light chiral fermion states. If the arguments of 
Ref. 1221 for a massless phase at ultra-strong coupling 
hold for our model as well, then there is a second para- 
magnetic strong coupling phase which we must avoid. 

Our scheme gives an intuitive description of anoma- 
lous currents, generalizing the discussion in Ref. [ 121. 
When a topologically non-trivial gauge configuration 
induces baryon flow out of the primary wall of our five- 
dimensional system, this current continues to the sec- 
ondary wall where baryon number is strongly violated. 
The latter wall acts as an unusual mirror, reflecting the 
baryons back as leptons. The lepton flow returns to 
the primary wall and cancels the lepton number also 
coming from the topological transition. Because there 
is a mass gap on the secondary wall, it acts as a per- 
fect mirror, giving no additional factors to the usual 
tunneling expression. In this process the difference of 
baryon and lepton number is exactly conserved, just 
as in the usual continuum standard model. 

Anomaly cancelation is essential to our picture. In 
the standard model both the quarks and the leptons 
must be present. Otherwise this gauge invariant vertex 
does not exist. Even though we have strong baryon vi- 
olation on one wall, this need not induce unacceptably 
large baryon decay for the physical particles. Commu- 
nication between the two domain walls is exponen- 
tially suppressed for all but anomalous currents. The 
same small factors as in the usual continuum treatment 
[ 21 suppress the latter. 

In some sense the theory still has doublers, but we 
use them. The extra term converts the lepton mirrors 
to composite three quark states, and the quark dou- 
blers to lepton diquark combinations. Also note that 
the chiral partner of a given state is a convention re- 
lated to the particular gauge field being considered. 
From the standpoint of the strong interactions, the left- 
and right-handed quarks are partners of each other. For 
the weak interactions the matching of particles with 
doublers is most natural in the above twisted manner. 
At the level of physical particles, the interpretation is 
simpler: the doubler of the left-handed electron is the 
right-handed anti-proton. Both have the same charge, 
are singlets under strong SU(3) and are members of 
weak doublets. 

Our proposal makes no use of the Higgs mechanism 
usually used to generate particle masses. Indeed, since 
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our starting point is exactly gauge invariant, the Higgs 
generation of physical fermion and weak boson masses 
need only be applied in the standard manner at the last 
stage. This might raise new non-perturbative issues, 
but goes beyond the subject of this paper. Since the 
mirror world has all anomalies properly canceled, it 
should decouple from the low energy physics of the 
normal standard model in the continuum limit. 
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